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Reduced-Order Models (ROMs)

ROMs as Enabling Technology

Many-query analyses
Optimization: design, control

Single objective, single-point
Multiobjective, multi-point

Uncertainty Quantification

Optimization under uncertainty

Real-time analysis

Model Predictive Control (MPC)

Flapping Bat Flight Simulation

Visualization of Mach number on isosurface of entropy

Unphysical separation around simplified animal “body”

Figure: Flapping Wing
(Persson et al., 2012)

REDUCED ORDER MODEL (ROM) 

 o Perturbation problems (stability, trends, control, etc.)!

 o Response problems (behavior, performance, etc.)!

 - linearized                                                                                                                 !

 - nonlinear                                                                            !

!   Complex, time-dependent problems!
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Application I: Compressible, Turbulent Flow over Vehicle

Benchmark in automotive
industry

Mesh

2,890,434 vertices
17,017,090 tetra
17,342,604 DOF

CFD

Compressible
Navier-Stokes
DES + Wall func

Single forward simulation

≈ 0.5 day on 512 cores

Desired: shape optimization

unsteady effects
minimize average drag

and LES turbulence models, as well as a wall function. It performs a second-order semi-discretization of the convective fluxes
using a method based on the Roe, HLLE, or HLLC upwind scheme. It can also perform second- and fourth-order explicit and
implicit temporal discretizations using a variety of time integrators. The GNAT implementation in AERO-F is characterized by
the sample-mesh concept described in Section 5. All linear least-squares problems and singular value decompositions are
computed in parallel using the ScaLAPACK library [50]. AERO-F is used here to demonstrate GNAT’s potential when applied
to a realistic, large-scale, nonlinear benchmark CFD problem: turbulent flow around the Ahmed body.

The Ahmed-body geometry [47] is a simplied car geometry. It can be described as a modified parallelepiped featuring
round corners at the front end and a slanted face at the rear end (see Fig. 6). Depending on the inclination of this face, dif-
ferent flow characteristics and wake structure may be observed. For a slant angle uP 30!, the flow features a large detach-
ment. For smaller slant angles, the flow reattaches on the slant. Consequently, the drag coefficient suddenly decreases when
the slant angle is increased beyond its critical value of u ¼ 30!. Due to this phenomenon, predicting the flow past the Ahmed
body for varying slant angles has become a popular benchmark in the automotive industry.

This work considers the subcritical angleu ¼ 20! and treats the drag coefficient CD ¼ D
1
2q1V2

15:6016#10$2 m2 around the body as

the output of interest. The free-stream velocity is set to V1 ¼ 60 m/s, and the Reynolds number based on a reference length
of 1.0 m is set to Re ¼ 4:29# 106. The free-stream angle of attack is set to 0!.

6.2.1. High-dimensional CFD model
The high-dimensional CFD model corresponds to an unsteady Navier–Stokes simulation using AERO-F’s DES turbulence

model and wall function. The fluid domain is discretized by a mesh with 2,890,434 nodes and 17,017,090 tetrahedra (Fig. 7).
A symmetry plane is employed to exploit the symmetry of the body about the x–z plane. Due to the turbulence model and
three-dimensional domain, the number of conservation equations per node is m ¼ 6, and therefore the dimension of the CFD
model is N ¼ 17;342;604. Roe’s scheme is employed to discretize the convective fluxes; a linear variation of the solution is
assumed within each control volume, which leads to a second-order space-accurate scheme.

Flow simulations are performed within a time interval t 2 0 s;0:1 s½ &, the second-order accurate implicit three-point
backward difference scheme is used for time integration, and the computational time-step size is fixed to Dt ¼ 8# 10$5 s.
For the chosen CFD mesh, this time-step size corresponds to a maximum CFL number of roughly 2000. The nonlinear system
of algebraic equations arising at each time step is solved by Newton’s method. Convergence is declared at the kth iteration
for the nth time step when the residual satisfies kRnðkÞk 6 0:001kRnð0Þk. All flow computations are performed in a non-dimen-
sional setting.

A steady-state simulation computes the initial condition for the unsteady simulation. This steady-state calculation is
characterized by the same parameters as above, except that it employs local time stepping with a maximum CFL number
of 50, it uses the first-order implicit backward Euler time integration scheme, and it employs only one Newton iteration
per (pseudo) time step.

All computations are performed in double-precision arithmetic on a parallel Linux cluster5 using a variable number of
cores.

6.2.2. Comparison with experiment
Ref. [47] reports an experimental drag coefficient of 0.250 around the Ahmed body for a slant angle of u ¼ 20!. Fig. 8

reports the time history of the drag coefficient computed using the high-dimensional CFD model described in the previous
section. Indeed, the time-averaged value of the computed drag coefficient obtained using the trapezoidal rule is CD ¼ 0:2524.

Fig. 6. Geometry of the Ahmed body (from Ref. [51].)

5 The cluster contains compute nodes with 16 GB of memory. Each node consists of two quad-core Intel Xeon E5345 processors running at 2.33 GHz inside a
DELL Poweredge 1950. The interconnect is Cisco DDR InfiniBand.

K. Carlberg et al. / Journal of Computational Physics 242 (2013) 623–647 637

(a) Ahmed Body: Geometry (Ahmed et al, 1984)

Hence, it is within less than 1% of the reported experimental value. This asserts the quality of the constructed CFD model and
AERO-F’s computations. For reference, this high-dimensional CFD simulation consumed 13.28 h on 512 cores.

6.2.3. ROM performance metrics
The following metrics will be used to assess GNAT’s performance. The relative discrepancy in the drag coefficient, which

assesses the accuracy of a GNAT simulation, is measured as follows:

RD ¼
1
nt

Xnt

n¼1
jCn

DI " Cn
DIII

j
max

n
Cn
DI "min

n
Cn
DI

; ð31Þ

where Cn
DI denotes the drag coefficient computed at the nth time step using the high-dimensional CFD model (tier I model),

and Cn
DIII denotes the corresponding value computed using the GNAT ROM (tier III model).

The improvement in CPU performance delivered by GNAT as measured in wall time is defined as

WT ¼ T I

T III
; ð32Þ

where T I denotes the wall time consumed by a flow simulation associated with the high-dimensional CFD model, and T III

denotes the wall time consumed online by its counterpart based on a GNAT ROM. For the high-dimensional model, the
reported wall time includes the solution of the governing equations and the output of the state vector; for the GNAT
reduced-order model, it includes the execution of Algorithm 2. After the completion of Algorithms 1 and 2 is executed to

Fig. 7. CFD mesh with 2,890,434 grid points and 17,017,090 tetrahedra (partial view, u ¼ 20%). Darker areas indicate a more refined area of the mesh.

Fig. 8. Time history of the drag coefficient predicted for u ¼ 20% using DES and a CFD mesh with N ¼ 17;342;604 unknowns. Oscillatory behavior due to
vortex shedding is apparent.

638 K. Carlberg et al. / Journal of Computational Physics 242 (2013) 623–647

(b) Ahmed Body: Mesh (Carlberg et al, 2011)
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Application II: Turbulent Flow over Flapping Wing

Biologically-inspired flight

Micro aerial vehicles

Mesh

43,000 vertices
231,000 tetra (p = 3)
2,310,000 DOF

CFD

Compressible Navier-Stokes
Discontinuous Galerkin

Desired: shape optimization +
control

unsteady effects
maximize thrust

Flapping Bat Flight Simulation

Visualization of Mach number on isosurface of entropy

Unphysical separation around simplified animal “body”

Figure: Flapping Wing (Persson et al., 2012)
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Problem Formulation

Goal: Rapidly solve PDE-constrained optimization problems of the form

minimize
w∈RN , µ∈Rp

f(w,µ)

subject to R(w,µ) = 0
Discretize-then-optimize

where R : RN × Rp → RN is the discretized (steady, nonlinear) PDE, w is the
PDE state vector, µ is the vector of parameters, and N is assumed to be very
large.

REDUCED ORDER MODEL (ROM) 

 o Perturbation problems (stability, trends, control, etc.)!

 o Response problems (behavior, performance, etc.)!

 - linearized                                                                                                                 !

 - nonlinear                                                                            !

!   Complex, time-dependent problems!
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Definition of Φ: Proper Orthogonal Decomposition

MOR assumption

w − w̄ ≈ Φy =⇒ ∂w

∂µ
≈ Φ

∂y

∂µ

State-Sensitivity1 POD

Collect state and sensitivity snapshots by sampling HDM

X =
[
w(µ1)− w̄ w(µ2)− w̄ · · · w(µn)− w̄

]
Y =

[
∂w
∂µ (µ1) ∂w

∂µ (µ2) · · · ∂w
∂µ (µn)

]
Use Proper Orthogonal Decomposition to generate reduced bases from each
individually

ΦX = POD(X)

ΦY = POD(Y)

Concatenate to get ROB
Φ =

[
ΦX ΦY

]
1(Washabaugh and Farhat, 2013),(Zahr and Farhat, 2014)
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ROM-Constrained Optimization

ROM-constrained optimization:

minimize
y∈Rn, µ∈Rp

f(w̄ + Φy,µ)

subject to ΨTR(w̄ + Φy,µ) = 0

where
Rr(y,µ) = ΨTR(w̄ + Φy,µ) = 0

is the reduced-order model
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Progressive/Adaptive Approach

Progressive Approach to ROM-Constrained Optimization

Collect snapshots from HDM at sparse sampling of the parameter space

Initial condition for optimization problem

Build ROB Φ from sparse training

Solve optimization problem

minimize
y∈Rn, µ∈Rp

f(w̄ + Φy,µ)

subject to ΨTR(w̄ + Φy,µ) = 0

1

2
||R(w̄ + Φy,µ)||22 ≤ ε

Use solution of above problem to enrich training and repeat until
convergence

(Arian et al., 2000), (Fahl, 2001), (Afanasiev and Hinze, 2001), (Kunisch and
Volkwein, 2008), (Hinze and Matthes, 2013), (Yue and Meerbergen, 2013), (Zahr
and Farhat, 2014)
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Progressive Approach

HDM

HDM

ROB
Φ,ΨCompress

ROM

OptimizerHDM

Figure: Schematic of Algorithm
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Progressive Approach

(a) Idealized Optimization Trajectory: Parameter Space
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(b) Breakdown of Computational Effort
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Progressive Approach

Ingredients of Proposed Approach (Zahr and Farhat, 2014)

Minimum-residual ROM (LSPG) and minimum-error sensitivities

fr(µ) = f(µ),
dfr
dµ

(µ) =
df

dµ
(µ) for training parameters µ

Reduced optimization (sub)problem

minimize
y∈Rn, µ∈Rp

f(w̄ + Φy,µ)

subject to ΨTR(w̄ + Φy,µ) = 0

1

2
||R(w̄ + Φy,µ)||22 ≤ ε

Efficiently update ROB with additional snapshots or new translation vector

Without re-computing SVD of entire snapshot matrix

Adaptive selection of ε→ trust-region approach

Zahr and Farhat Progressive ROM-Constrained Optimization
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Adaptive Selection of Trust-Region Radius

Let

µ∗−1 = µ
(0)
0 = initial condition for PDE-constrained optimization

µ∗j = solution of jth reduced optimization problem

Define

ρj =
f(w(µ∗j ),µ

∗
j )− f(w(µ∗j−1),µ∗j−1)

f(wr(µ∗j ),µ
∗
j )− f(wr(µ∗j−1),µ∗j−1)

Trust-Region Radius

ε′ =


1
τ ε ρk ∈ [0.5, 2]

ε ρk ∈ [0.25, 0.5) ∪ (2, 4]

τε otherwise

Zahr and Farhat Progressive ROM-Constrained Optimization
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Fast Updates to Reduced-Order Basis

Two situations where snapshot matrix modified (Zahr and Farhat, 2014)

Additional snapshots to be incorporated

Φ′ = POD(
[
X Y

]
) given Φ = POD(X)

Offset vector modified

Φ′ = POD(X− w̃1T ) given Φ = POD(X− w̄1T )

Compute new basis using singular factors of existing basis complete without
complete recomputation

Fast, Low-Rank Updates to ROB

Compute (Brand, 2006)

Φ′ = POD(X + ABT ) given Φ = POD(X)

Large-scale SVD (N × nsnap) replaced by small SVD (independent of N)

Error incurred by using truncated basis ∝ σn+1

Usually small in MOR applications

Zahr and Farhat Progressive ROM-Constrained Optimization
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Airfoil Design
Rocket Nozzle Design

Compressible, Inviscid Airfoil Inverse Design

(a) NACA0012: Pressure field
(M∞ = 0.5, α = 0.0◦)

(b) RAE2822: Pressure field (M∞ = 0.5,
α = 0.0◦)

Pressure discrepancy minimization (Euler equations)
Initial Configuration: NACA0012
Target Configuration: RAE2822
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Airfoil Design
Rocket Nozzle Design

Initial/Target Airfoils: Scaled
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Airfoil Design
Rocket Nozzle Design

Shape Parametrization

(a) µ(1) = 0.1 (b) µ(2) = 0.1

(c) µ(3) = 0.1 (d) µ(4) = 0.1

Figure: Shape parametrization of a NACA0012 airfoil using a cubic design element
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Airfoil Design
Rocket Nozzle Design

Shape Parametrization

(a) µ(5) = 0.1 (b) µ(6) = 0.1

(c) µ(7) = 0.1 (d) µ(8) = 0.1

Figure: Shape parametrization of a NACA0012 airfoil using a cubic design element
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Airfoil Design
Rocket Nozzle Design

Optimization Results
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Airfoil Design
Rocket Nozzle Design

Optimization Results
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Airfoil Design
Rocket Nozzle Design

Optimization Results
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Airfoil Design
Rocket Nozzle Design

Optimization Results
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Airfoil Design
Rocket Nozzle Design

Optimization Results

HDM-based
optimization

ROM-based
optimization

# of HDM Evaluations 29 7
# of ROM Evaluations - 346
||µ∗ − µRAE2822||
||µRAE2822|| 2.28× 10−3% 4.17× 10−6%

Table: Performance of the HDM- and ROM-based optimization methods
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Airfoil Design
Rocket Nozzle Design

Quasi-1D Euler Flow

Quasi-1D Euler equations:

∂U

∂t
+

1

A

∂(AF)

∂x
= Q

where

U =

 ρρu
e

 , F =

 ρu
ρu2 + p
(e+ p)u

 , Q =

 0
p
A
∂A
∂x
0


Semi-discretization

Finite Volume Method: constant reconstruction, 500 cells
Roe flux and entropy correction

Full discretization

Backward Euler
Pseudo-transient integration to steady state

Zahr and Farhat Progressive ROM-Constrained Optimization
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Airfoil Design
Rocket Nozzle Design

Nozzle Parametrization

Nozzle parametrized with cubic splines using 13 control points and constraints
requiring

convexity A′′(x) ≥ 0

bounds on A(x) Al(x) ≤ A(x) ≤ Au(x)

bounds on A′(x) at inlet/outlet A′(xl) ≤ 0, A′(xr) ≥ 0
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Airfoil Design
Rocket Nozzle Design

Parameter Estimation/Inverse Design

For this problem, the goal is to determine the parameter µ∗ such that the flow
achieves some optimal or desired state w∗

minimize
w∈RN , µ∈Rp

||w(µ)−w∗||

subject to R(w,µ) = 0

c(w,µ) ≤ 0

where c are the nozzle constraints.
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Airfoil Design
Rocket Nozzle Design

Objective Function Convergence

(a) Convergence (# HDM Evals)
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(b) Convergence (CPU Time)
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Airfoil Design
Rocket Nozzle Design

Hyper-Reduced Optimization Progression

Figure: Parameter (µ) Progression
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Airfoil Design
Rocket Nozzle Design

Optimization Summary

HDM-Based Opt HROM-Based Opt

Rel. Error in µ∗ (%) 1.82 5.26

Rel. Error in w∗ (%) 0.11 0.12

# HDM Evals 27 8

# HROM Evals 0 161

CPU Time (s) 3361.51 2001.74
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Summary

Summary

Introduced progressive, nonlinear trust region framework for reduced
optimization

Demonstrated approach on canonical problem from aerodynamic shape
optimization

Factor of 4 fewer queries to HDM than standard PDE-constrained
optimization approaches

Preliminary results on toy problem regarding extension of framework to
hyperreduction
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